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Abstract
Human–carnivore conflicts on agricultural lands are a global conservation issue
affecting carnivore population viability, and human safety and livelihoods. Loca-
tions of conflicts are influenced by both human presence and carnivore habitat
selection, although these two aspects of conflict rarely have been examined con-
currently. Advances in animal tracking have facilitated examination of carnivore
habitat selection and movements affording new opportunities to understand
spatial patterns of conflict. We reviewed 10 years of data on conflicts between
grizzly bears and humans in southwestern Alberta, Canada. We used logistic
regression models in a geographic information system to map the probability of
bear–human conflict from these data, and the relative probability of grizzly bear
habitat selection based on global positioning system radiotelemetry data. We
overlaid these maps to identify ecological traps, as well as areas of secure habitat.
The majority of the landscape was seldom selected by bears, followed by ecologi-
cal traps where most conflicts occurred. Only a small portion of the landscape was
identified as secure habitat. Such mapping methods can be used to identify areas
where conflict reduction strategies have the greatest potential to be effective. Our
results highlight the need for comprehensive management to reduce conflicts and
to identify areas where those conflicts are most problematic. These methods will be
particularly useful for carnivores known to be in conflict with agriculture, such as
large carnivores that prey on livestock, or pose a threat to human safety.

Introduction

Conflict with humans has contributed to both historic and
contemporary declines in carnivore population sizes
(Woodroffe & Ginsberg, 1998; Woodroffe, 2000; Treves &
Karanth, 2003). On agricultural lands, large carnivores in
particular compete with humans for space and resources,
resulting in conflicts worldwide (Ogada et al., 2003;
Kolowski & Holekamp, 2006; Wilson et al., 2006; Sangay &
Vernes, 2008). As a result, carnivores are killed in defense of
life or property, and government-supported control and
relocations are common (Bjorge & Gunson, 1985; Linnell
et al., 1997; Woodroffe & Frank, 2005). While these con-
flicts have a negative impact on carnivores on agricultural
lands, they also have contributed to historical extinctions
inside reserves (Woodroffe & Ginsberg, 1998). Therefore,
understanding patterns of conflict and developing methods
for conflict reduction are of paramount importance for
global carnivore conservation.

Fundamental to conflict reduction is understanding and
predicting where and why conflicts occur (Treves et al.,
2011). While the proximate causes of conflicts themselves
are well known for many species, the ultimate reason for
these conflicts often is not. Gaining a better understanding
of this issue has been the focus of a substantial portion of the

carnivore–human conflict literature, with methods often
focusing on carnivore occurrence data (Mech et al., 2000;
Treves et al., 2004; Michalski et al., 2005), or the spatial
locations and nature of conflicts separately (Rajpurohit &
Krausman, 2000; Polisar et al., 2003; Johnson et al., 2004).
While these approaches offer helpful insights into where and
why conflicts occur, and can be used to predict subsequent
conflicts (see Treves et al., 2011), data for a rigorous con-
current analysis of carnivore–human conflict and carnivore
habitat selection often are not available, leading to an
incomplete understanding of the reasons underlying
conflicts.

Continuing advances in animal-tracking technology
(Cagnacci et al., 2010) provide fine-scale data for the analy-
sis of habitat selection of large carnivores, affording new
opportunities to examine the interplay between habitat
selection and conflict. Understanding this interplay will be
crucial to conflict reduction, because if conflicts on agricul-
tural lands occur in habitats preferentially selected by car-
nivores, more comprehensive management strategies might
be required. Such dynamics would indicate the presence of
ecological traps (Dwernychuk & Boag, 1972), which are
selected habitats where fitness is lower than in surrounding
areas (Schlaepfer, Runge & Sherman, 2002; Robertson &
Hutto, 2006). Nielsen, Stenhouse and Boyce (2006) used a
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two-stage modeling approach, incorporating habitat selec-
tion and mortality risk, to document ecological traps along
roads in public forests for grizzly bears (Ursus arctos) in
Alberta. However, ecological traps have not been docu-
mented for carnivores on agricultural lands.

Grizzly bears have a long history of conflict with agricul-
ture in North America where there were dramatic declines
and large-scale extirpations during the 20th century (Brown,
1985; Mattson & Merrill, 2002). Currently conflicts are rare
in national parks and some public lands (Mattson et al.,
1996; Mattson & Merrill, 2002; Gunther et al., 2004),
although agricultural attractants continue to be a source of
conflicts on private lands (Gunther et al., 2004; Wilson
et al., 2005, 2006; Northrup, 2010). The reduction of these
conflicts has been highlighted as important for the recovery
of grizzly bear populations (Alberta Sustainable Resource
Development, 2008).

We overlaid maps predicting grizzly bear–human conflict
risk, estimated from 10 years of documented conflicts, with
maps predicting grizzly bear habitat selection, estimated
from global positioning system (GPS) radiotelemetry data.

The resulting maps were used to identify ecological traps
and to validate that the distribution of conflicts was consist-
ent with predicted ecological traps. Such maps can be used
to delineate areas where the potential for conflict is high and
where management and conservation action would be most
beneficial.

Methods

Study area

The study took place in southwestern Alberta, Canada near
the town of Pincher Creek, along the east front of the Rocky
Mountains (Fig. 1). This area is composed of private agri-
cultural land, multi-use public land and protected areas. The
western portion of the study area was public land with a
diversity of industrial and recreational uses. The majority of
private land in the east was agricultural, and the primary
land use was livestock grazing.

Grizzly bears in this area use private agricultural lands
extensively, with several grizzly bear home ranges composed

Figure 1 Maps of habitat states for grizzly bears in southwestern Alberta, calculated from maps of conflict risk and habitat selection during the
daytime (a) and nighttime (b), as well as the location of the study area in Alberta, Canada (c; the shaded polygon represents the study area). In
habitat state maps low-priority habitat is colorless to allow the elevation gradient to be displayed. The black line represents the border between
public forest, to the west, and the private land, to the east. Waterton Lakes National Park is delineated by the blue-bordered polygon in the
southwest corner of the map.
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mostly of private property (Northrup, 2010). This area
abuts the Flathead Valley of British Columbia and
Montana, and Glacier National Park, areas that harbor
some of the highest recorded densities of grizzly bears in
interior North America (McLellan, 1989; Kendall et al.,
2008). For all analyses and extrapolations, later, we limit
our extent to the 95% minimum convex polygon (MCP) of
all bears in the study to ensure that our results are relevant
to our statistical population.

Conflict data and risk model

We reviewed all Alberta Sustainable Resource Development
occurrence reports (wildlife sightings or incidences reported
to enforcement personnel) involving grizzly bears between
April 1999 and August 2009 in the study area. For each
report, a location was given for the 65-ha parcel of land
(quarter section) on which the conflict occurred. We deter-
mined if each report could be considered a conflict, defined
as an activity that could lead to damage or harm to people,
pets or property, or that involved attractants or unnatural
food sources. This included instances in which a bear was
traveling close to dwellings, because this could lead to a
conflict (Wilson et al., 2005). Records involving black bears
(U. americanus) were removed from the dataset. Conflicts
were reviewed for redundancy and were mapped using
ArcMap 9.2 (ESRI, Redlands, CA, USA).

To model the probability of conflict we defined the land-
scape as a grid of quarter sections in which a reported con-
flict had occurred (1) or not (0). Events that might be
considered a conflict probably occurred in some of the cells
that we had assigned 0 s (i.e. contamination; Johnson et al.,
2006). However, for statistical analysis, we defined our set of
conflicts to be all activities that were witnessed, or discov-
ered, and reported to wildlife enforcement personnel during
the study. Our interest was in the probability of conflict in
each quarter section during the 10-year study, and our data
were discrete binary (0,1) data; thus, logistic regression
offers a natural method for analysis (Hosmer & Lemeshow,
2000).

Habitat-selection models

Between 2004 and 2008, 12 grizzly bears (5 adult males, 2
sub-adult males, 2 females with cubs, 2 lone adult females
and 1 sub-adult female) were captured following the
methods of Cattet, Caulkett & Stenhouse (2003) and fitted
with Televilt Tellus II and Simplex (Televilt Ltd, Lindes-
berg, Sweden), and Advanced Telemetry Systems (ATS,
Advanced Telemetry Systems, Isanti, MN, USA) GPS
radiocollars. Collars were set to obtain fixes either once
every hour (7 bears) or five times per day (6 bears; 1 bear was
fit with each type of collar on separate occasions). We esti-
mated resource selection functions (RSFs; Manly et al.,
2002) assuming the selection function took the exponential
form, and estimated model coefficients using logistic regres-
sion in a use-available design (Johnson et al., 2006). RSFs fit
in this manner provide information on the relative probabil-

ity of selection of an encountered (available) resource (Lele
2009). All models were fit using STATA 10 (StataCorp LP,
College Station, TX, USA).

Boyce et al. (2010) found bears in this area to have diel
behavioral patterns that were variable among individuals.
Northrup (2010) similarly found that bears altered habitat
selection patterns between night and day. Furthermore,
because of variation in the amount of time individual bears
were collared, we had an unequal number of GPS fixes for
each bear. To account for these factors, we estimated indi-
vidual models for each bear and averaged coefficients across
bears for day and night separately (Fieberg et al., 2010). We
determined the start and end of night by the average sunset
and sunrise times at Lethbridge, Alberta (nearest city) for
the month in which each location occurred (http://www.nrc-
cnrc.gc.ca/eng/services/hia/sunrise-sunset.
html). To characterize availability, we drew 5000 random
locations from each bear’s 100% Alberta MCP homerange
using the Geospatial Modeling Environment (GME; http://
www.spatialecology.com) software. These same random
locations were used to estimate both night and day models.
Because GPS fix success was less than 90%, we weighted
used locations by the inverse probability of a successful fix
using models adapted from Frair et al. (2004) and Hebble-
white, Percy & Merrill (2007), accounting for habitat bias in
GPS fix success.

Predictor variables and model fitting

We selected a set of variables that we hypothesized a priori
to influence grizzly bear habitat selection, and bear–human
conflict based on previous studies (Nielsen et al., 2004, 2006,
2010; Roever, Boyce & Stenhouse, 2008; Northrup, 2010).
For conflict–risk models we calculated the average distance
within each quarter section to natural gas facilities (d_facil),
houses (d_house), streams (d_streams), roads (d_rds), low-
(d_low), medium- (d_med), and high-traffic volume roads
(d_high; Northrup, 2010), and the natural log transformed
distance to streams (ln_d_stream). We determined if each
quarter section contained natural gas facilities (facil),
houses (house), natural gas wells (well) and the number of
each in the quarter section (num_facil, num_well, num-
_house). We determined if the dominant land-cover type in
each quarter section (Franklin et al., 2001) was herbaceous
(herb), trees (tree), shrubs (shrub) or agriculture (agric;
Collingwood et al., 2009), and if the land was private
(private), or protected (park). We calculated the density of
cutlines (dens_cut), roads (dens_rds) and the density of each
traffic volume class of road (dens_high, dens_med and
dens_low). Using a digital elevation model we calculated the
average slope (slope), terrain ruggedness and compound
topographic indices (TRI, CTI; Nielsen et al., 2004), and
calculated the average canopy cover (canopy; obtained by
measuring the gap fraction in each pixel and rescaling to a
continuous variable). For RSFs, in addition to the variables
tree, herb, shrub, ln_d_stream, canopy, agric, CTI and TRI,
earlier (calculated at 30 ¥ 30 m pixels), we measured the
distance to cutlines and trails (d_cut), distance to edges from
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inside (d_edge_int) and outside (d_edge_ext) of treed land-
cover (Nielsen, Cranston & Stenhouse, 2009), and the
natural log transformed distances to houses (ln_d_house)
and different traffic volume roads (ln_d_low, ln_d_med,
ln_d_high). In addition, we calculated the normalized differ-
ence vegetation index (NDVI; Townshend & Justice, 1986),
elevation (elev), if the location was in forest less than 100
years old (cutblock), or in an area containing the known
bear foods Saskatoon berry (Amelanchier alnifolia; amel),
huckleberry (Vaccinium spp.; vacc), buffalo berry (Shep-
herdia canadensis; shep), cow parsnip (Heracleum maximum;
herac), horsetail (Equisetum spp.; equis), or dandelion
(Taraxacum spp.; tarax). Foods variables were obtained
from statistical models of occurrence (Supporting Informa-
tion Appendix S1; Nielsen et al., 2003), that were season
specific [i.e. berry species considered present only during fall
(August 1 to den entrance), and forb species only available
in spring (den exit to July 31)]. For conflict models, the
variables mentioned earlier were extracted using the zonal
statistics tool in ArcMap 9.2. For the estimation of RSFs,
variables were extracted using GME.

We used the same model-fitting procedures, detailed
later, for RSFs and conflict risk models separately. There
are several methods for model selection (see Hastie, Tib-
shirani & Friedman, 2009; Burnham & Anderson, 2002;
Guthery et al., 2005), and especially when prediction is the
desired outcome, as in this case, there is no one solution
because all model-fitting procedures have shortcomings.
Therefore, we chose a model building procedure that we
believed would provide the best predictive models, while still
avoiding potential spurious results.

We selected a set of variables that have been shown to be
important predictors in previous studies or that were
germane to our study. Because many of these variables were
highly correlated (|r| > 0.7) we first used single-variable logis-
tic regression (Hosmer & Lemeshow 2000) to identify which
variable, from a set of correlated variables, best fit the data
(smallest log-likelihood). We then fit global models of all
variables retained from the prior step, as well as all variables
that were not highly correlated with another variable and
interaction terms that we believed to be biologically relevant
(Hosmer & Lemeshow, 2000). We removed nonsignificant
variables (P > 0.1) until only significant variables remained,
monitoring the coefficients and significances, as well as the
log-likelihood of models, for large changes with each
removal (Hosmer & Lemeshow, 2000). In the case of such
changes, we examined the data for further interactions and
retained nonsignificant variables in models if interactions
with other variables were significant and biologically plausi-
ble. The above model-selection procedures might compro-
mise statistical inference, but our objective was to identify the
most predictive model, not statistical inference. We discuss
methods to assure accurate predictive models below.

We estimated a final conflict risk model and evaluated
predictive ability using area under the receiver operating
characteristics curve (AUC; Swets, 1988; Manel, Williams &
Ormerod, 2001). We used this model to generate maps in
ArcMap 9.2 depicting the probability of bear–human con-

flict. Maps were reclassified from 1 to 10 using a quantile
method with 1 representing the lowest probability of conflict
and 10 the highest.

For RSFs, we fit individual models for each bear for day
and night separately and averaged regression coefficients
across bears to obtain a population-level model for day and
night separately (Fieberg et al., 2010). Some variables did
not appear in all models, in which case a coefficient of 0 was
used for model averaging (Marzluff et al., 2004). Using
these averaged RSFs, for day and night separately, we gen-
erated maps of the relative probability of selection for each
landscape pixel using the exponential function

w x x xz z( ) exp( )x = + + +β β β1 1 2 2 …

where bi represents the selection coefficient for variable xi in
a vector, x, of z covariates, and w(x) is the RSF. Maps were
reclassified into 10 bins (1–10) using a quantile method in
ArcMap 9.2, with 1 representing the lowest relative probabil-
ity of selection and 10 representing the highest. Maps were
masked by non-vegetated areas, assumed a priori to be non-
habitat, and which were assigned a value of 0. We used
fivefold cross-validation to evaluate the predictive ability of
the averaged model (Boyce et al., 2002). As with any model,
our results are only directly applicable to our sample popu-
lation. Because we wanted to obtain a highly predictive
population-level map, we also used individual animal leave-
one-out cross-validations to ensure that the predictions of
our RSFs were robust to individual variation and to our
modeling design, and thus to ensure that our models could be
extrapolated to the greater population (Wiens et al., 2008).
We averaged coefficients, as earlier, across 11 individuals,
withholding data for one bear in turn. We then generated
predictive maps, as described earlier, and plotted the area-
adjusted frequency of occurrence for each RSF bin against
the bin value and calculated a Spearman’s rank correlation
coefficient (see Wiens et al., 2008). Because there were 12
individuals in our study, this process was repeated 12 times.

Positive autocorrelation can decrease the variance of
coefficients in logistic regression models (Lennon, 2000). By
considering the individual to be the sampling unit, unbiased
estimates of coefficients for RSF models can be obtained for
an averaged model (Fieberg et al., 2010). For conflict risk
models, we examined spatial autocorrelation in the residuals
of our final model using Moran’s I statistic at various neigh-
borhood lags (1 neighborhood = adjacent quarter sections).
We detected positive spatial autocorrelation at one and two
lags; thus, we fit an autologistic model (Augustin, Muggle-
stone & Buckland, 1996), including variables for the pres-
ence of conflict in one or two neighbourhood lags (con_1
and con_2, respectively). This analysis was conducted using
the ‘spdep’ package in R 2.10.0 (R Development Core
Team, 2009).

Habitat states

We overlaid the conflict risk map with the RSF maps for
day and night in ArcMap 9.2 and identified five habitat
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states at a pixel size of 30 ¥ 30 m: low-priority habitat,
primary and secondary habitat, and primary and secondary
traps (sensu Nielsen et al., 2006; Fig. 2). Low-priority habi-
tats are areas that bears will avoid, and thus would be a
lower priority for management action; however, we would
expect bears to use these areas occasionally, and conflicts
still might be highly probable in these areas. We determined
the most common habitat state for each quarter section in
which a conflict was recorded. If our model of conflict risk
was accurate, we would assume the majority of conflicts
occurred in quarter sections with a high risk of conflict.
Furthermore, it is important to know if the quarter sections
contained selected habitats (ecological traps) or were not
likely to be selected by bears (low-priority areas).

Results
During the 10-year study period, 303 occurrence reports
were classified as conflicts, of which 257 had spatial location
information. Conflicts were influenced by both natural
habitat characteristics and anthropogenic features (Table 1;
Supporting Information Appendix S2). Conflicts were more
likely to occur in quarter sections with houses, higher den-
sities of cutlines and trails, lower densities of roads, and
closer to natural gas facilities. In addition, conflicts were
more likely in quarter sections that were composed mostly
of treed land-cover, and had a lower average slope
(Table 1). The final conflict risk model had good predictive
ability (AUC = 0.85).

Spatial patterns of grizzly bear habitat selection and
model coefficients differed between night and day (Support-

ing Information Appendix S2). The signs of coefficients were
the same for most variables for both time periods, but the
magnitudes differed (Table 2). Fivefold cross-validations
and individual animal leave-one-out validations, indicated
high predictive capacity (fivefold: day rs = 1 and night rs = 1;
individuals withheld: day rs = 1 and night rs = 0.97).

The majority of the private land was classified as ecologi-
cal traps (56% night, 33% day) or low-priority habitats (36%
night, 59% day), whereas the majority of public land was
low-priority (81% night, 49% day) or secure habitats (16%
night, 45% day). There were pronounced differences in
habitat states between night and day periods (Fig. 1). Most
conflicts occurred in quarter sections dominated by habitat
traps (75% night, 35% day) or low-priority habitats (20%
night, 64% day).

Discussion
Our results indicate that the patterns of bear–human con-
flict in our study area resulted from overlap between human
developments and highly selected habitats. These areas of
overlap were almost exclusively on private lands, and the
probability of bear–human conflict was higher in areas adja-
cent to quarter sections in which there had been a conflict,
indicating a non-random distribution of risky areas.

As in other agricultural landscapes, most bear–human
conflicts were related to agricultural practices (Wilson et al.,
2005, 2006; Northrup, 2010). While incorporating attract-
ants or livestock information into our models would have
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Figure 2 Schematic representing the criteria used to identify areas of
low-priority habitats [resource selection functions (RSF) value < 5],
secondary traps (RSF value 5–7, risk value > 5), secondary habitats
(RSF value 5–7, risk value � 5), primary traps (RSF value > 7, risk
value > 5) and primary habitats (RSF value > 7, Risk value � 5).
Figure adapted from Nielsen et al. (2006).

Table 1 Coefficients and SE for conflict risk model generated using
known grizzly bear–human conflicts between 1999 and 2009 in
southwestern Alberta calculated at a cell size of 64 ha (quarter
section) and estimated from 257 conflicts over 5705 quarter sections

Covariatea Coefficient SE

slope -0.036 0.021e

d_facil -0.047d -7.34E-3d,e

housef 1.2 0.17e

treef 0.78 0.26e

tree ¥ slope -0.12 0.04e

dens_cut 0.47 0.19e

dens_high_wedb -1.81 0.89e

d_med_wddc -0.35d 0.18d,e

con_1f 0.28 0.17e

con_2f 0.97 0.19e

intercept -3.36 0.36e

Area under the receiver operating characteristics curve of this model
was 0.85 indicating good predictive power.
aCovariates were calculated at a cell size of 30 ¥ 30 m and averaged
across the entire quarter section unless otherwise noted.
bDensity of roads classified as high-volume on weekends (Northrup
2010).
cDistance to roads classified as medium-volume on weekdays (North-
rup 2010).
dCoefficients and standard errors multiplied by 1000.
eIndicates 90% confidence intervals that do not overlap 0.
fCategorical variable.
SE, standard error.
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likely improved our predictive ability, they are diffusely dis-
tributed across the landscape, and compiling a complete set
of agricultural attractants would be difficult. Instead, we
modeled conflict risk and habitat selection using variables
that were available at the scale of our study area. Conflicts
were more likely in areas with more people and more vehicle
access; such areas became traps when overlapping highly
selected habitat. During both day and night, this included
areas close to streams and edges, far from roads, and at
lower elevations. However, the spatial patterns of grizzly
bear habitat selection varied substantially between day and
night. During the day, when grizzly bears were most likely
to be bedding, they avoided open habitats (Boyce et al.,
2010; Northrup, 2010). During the night, when bears were
more active, they weakly avoided certain variables related to
open areas, while selecting strongly for others, including
cutlines and trails, and houses. These characteristics of eco-
logical traps could be used to better understand the poten-
tial risk for conflict between humans and bears. Ranches in
areas close to streams, with extensive habitat edges and at
lower elevations are most susceptible to chronic conflicts.

While the specifics of ecological traps are important,
perhaps the more pressing issue in this area is that the vast

majority of the habitats highly selected by grizzly bears
directly coincided with areas of high conflict risk. Private
agricultural lands contained almost the entirety of habitats
selected by bears, and over 50% of these lands were classified
as ecological traps at night when the bears were most active
(Boyce et al., 2010; Northrup, 2010). Thus, bears in this area
have little secure habitat, and unless management action is
taken, there will continue to be conflict. This is the first
study, to our knowledge, to use statistically rigorous models
of both habitat selection and conflict risk to delineate eco-
logical traps for large carnivores on agricultural lands.
Applications of such methods can be useful for carnivore
conservation wherever carnivores conflict with humans.
Specifically, these methods will be useful for managing large
carnivores that predominately inhabit private lands,
because there is likely to be heterogeneity in both habitat
selection and conflict patterns, which might result in the
formation of ecological traps. Identification of these traps is
a crucial first step in conflict reduction strategies.

Locally the consequences of ecological traps are high.
There are an estimated 51 grizzly bears in the population we
studied (Alberta Grizzly Bear Inventory Team, 2007), and
an average of 4.9 bears are relocated (2.9 average), translo-

Table 2 Covariates, coefficients and SE of night and day resource selection functions averaged across final individual models fit to GPS
radiocollar data from 12 grizzly bears in southwestern Alberta. GPS locations totaled 22 780 fixes

Covariate Night average coefficient SE Day average coefficient SE

ln_d_house -0.2353 0.1083 -0.1922 0.2301
d_ cut -0.19a 0.1715 0.041a 0.6204
ln_d_stream -0.0611 0.0211 -0.0359 0.0229
canopy 8.64E-4 0.0027 0.01177 0.0043
agricb -0.0852 0.0354 -0.2489 0.0894
NDVI -6.1E-05 4.35E-05 -8.7E-05 3.78E-5
d_edge_int -1.0a 0.3544 -0.065a 0.3947
d_edge_ext -2.9a 1.2284 -1.7a 1.5140
ln_d_low 0.0722 0.0441 0.1177 0.0524
ln_d_med 0.1874 0.1048 0.4025 0.1014
ln_d_high 0.2464 0.0985 0.1871 0.1157
cutblockb 0.124 0.1800 0.4124 0.2160
elev -4.2E-4 4.65E-4 -0.0015 0.0010
TRI 0.124 0.0045 -0.0051 0.0042
herbb -0.675 0.8726 -1.565 0.6843
shrubb -0.2433 0.1810 0.1508 0.1686
herb ¥ elev 4.45E-4 6.07E-4 0.0011 0.0005
d_cut ¥ private -0.11a 4.25E-4 -0.99a 0.0011
amelb 0.0183 0.0931 -0.2167 0.1816
vaccb -0.1029 0.1448 0.0151 0.1985
shepb -0.0872 0.131 -0.0905 0.1647
heracb 0.0046 0.0629 0.4367 0.1890
equisb 0.0781 0.2031 0.0357 0.1924
taraxb 0.0534 0.1151 -0.4881 0.2241
CTI -0.0106 0.0319 – 0.2301

Fivefold cross-validations and individual animal leave-one-out validations indicated high predictive capacity (fivefold: day rs = 1 and night rs = 1;
individuals withheld: day rs = 1 and night rs = 0.97). Not all variables appeared in each individual bear model, thus the large number of variables
is a result of variability in the final model across bears
aCoefficients multiplied by 1000.
bCategorical variable.
SE, standard error; GPS, global positioning system.
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cated (1.5 average) or killed (0.5 average) by management
agencies yearly (nearly 10% of the population, one-third of
which were female, although the sex of captured bears is not
always reported; Northrup, 2010). Although not analogous
to actual mortality, bears that have been relocated or have
management actions taken against them are also more likely
to come into conflict again or to die (Blanchard & Knight,
1995; Linnell et al., 1997), and the capture event itself can
cause serious injury (Cattet et al., 2008). The majority of
these management actions took place in areas classified as
ecological traps (70% in nighttime traps, 43% in daytime
traps, and 54% in low–priority, daytime habitats). Thus, the
conflict–habitat interplay in southwestern Alberta poses a
significant risk to the population. Long-term viability of the
southwestern Alberta population might be assured only
because of demographic rescue from large populations in
adjacent regions of Montana and British Columbia.

Agriculture has displaced carnivores on a global scale,
and conflicts are common in areas where large carnivores
occupy agricultural lands. When the best perceived habitats
coincide with the areas of highest potential for conflict,
management options are few. Removal or relocation of
wildlife is rarely successful (Blanchard & Knight, 1995;
Linnell et al., 1997). Other management strategies that
promote coexistence therefore need to be considered. For
grizzly bears, most conflicts on agricultural lands are related
to anthropogenic foods, such as dead cattle and grain
storage bins (Wilson et al., 2005, 2006; Northrup, 2010).
Such interactions certainly exist for other carnivores as well,
particularly those that commonly prey on livestock (More-
house & Boyce, 2011). Using geo-spatial tools to delineate
ecological traps and then focusing mitigation efforts in these
areas will help to prioritize conservation. Once delineated,
management agencies can work with agricultural stakehold-
ers to ensure husbandry practices that limit potential con-
flicts, such as proper storage of attractants and grazing of
livestock in low-risk areas.

Conclusions
Grizzly bears in our study area selected habitats that sub-
stantially overlapped with areas of high risk of human–bear
conflict. As a result, conflict rates were high and much of the
agricultural lands were classified as ecological traps. Reduc-
ing carnivore–human conflicts that create such ecological
traps will be a challenging conservation problem. For
grizzly bears, cleaning up attractants is an obvious first step,
but might not be enough if conflicts ultimately are a result of
humans living and working in prime bear habitats. To
ensure self-sustaining populations of large carnivores in
southwestern Alberta, humans must be willing to coexist,
which will require management agencies and conservation
groups to work directly with agricultural stakeholders.
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